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Several types of aggressive cancers, including hepatocellular carcinoma (HCC), often
arise as a multifocal primary tumor. This suggests a high rate of premalignant changes in
noncancerous tissue before the formation of a solitary tumor. Examination of the mes-
senger RNA expression profiles of tissue samples derived from patients with cirrhosis of
various etiologies by complementary DNA (cDNA) microarray indicated that they can
be grossly separated into two main groups. One group included hepatitis B and C virus
infections, hemochromatosis, and Wilson’s disease. The other group contained mainly
alcoholic liver disease, autoimmune hepatitis, and primary biliary cirrhosis. Analysis of
these two groups by the cross-validated leave-one-out machine-learning algorithms
revealed a molecular signature containing 556 discriminative genes (P < .001). It is
noteworthy that 273 genes in this signature (49%) were also significantly altered in HCC
(P < .001). Many genes were previously known to be related to HCC. The 273-gene signature
was validated as cancer-associated genes by matching this set to additional independent tumor
tissue samples from 163 patients with HCC, 56 patients with lung carcinoma, and 38 patients
with breast carcinoma. From this signature, 30 genes were altered most significantly in tissue
samples from high-risk individuals with cirrhosis and from patients with HCC. Among them, 12
genes encoded secretory proteins found in sera. In conclusion, we identified a unique gene
signature in the tissue samples of patients with cirrhosis, which may be used as candidate markers
for diagnosing the early onset of HCC in high-risk populations and may guide new strategies for
chemoprevention. Supplementary material for this article can be found on the HEPATOLOGY

website (http://www.interscience.wiley.com/jpages/0270-9139/suppmat/index.html). (HEPATOLOGY

2004;39:518–527.)

Primary liver carcinoma is the fifth most frequent
cancer in the world (there were an estimated
548,554 deaths in 2000). There has been a sharp

increase in the incidence of primary liver carcinoma in the

United States during the last decade.1,2 Hepatocellular
carcinoma (HCC) is the major type of primary liver car-
cinoma. Currently, survival remains poor for most pa-
tients with HCC, which is due to the aggressiveness of the
lesions at the time of diagnosis and the lack of effective
therapy. Although routine screening of individuals who
are at risk for developing HCC may lead to early diagnosis
and extend survival, most patients are still diagnosed with
advanced HCC. The prognosis for these patients is poor.3

Surgical resection of small HCCs diagnosed in the early
stage may be potentially effective. However, 70% of these
patients develop recurrent tumors after 5 years.4 There-
fore, current diagnostic and therapeutic approaches are
inadequate.

The current dogma for tumor evolution is that a tumor
is initiated from clonal expansion of an initiated cell with
a mutation either in a tumor suppressor gene or oncogene,
followed by an acquisition of sequential multiple genetic
changes.5 Similarly, HCC development has been specu-
lated to be a multistage process because of its progressively
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pathologic morphology.6 However, the stepwise progress
in human HCC is ill defined and specific genetic changes
associated with HCC progression remain vague.7 This has
been explained by the finding that most HCC tissue spec-
imens used for analysis may be at an advanced stage and
most of the changes found in these lesions can be second-
ary. Multiple genetic and epigenetic changes have been
found in morphologically altered hepatocytes from pa-
tients with HCC.7 Several studies have focused on the
utilization of the complementary DNA (cDNA) microar-
ray approach to identify unique gene sets that are abnor-
mally expressed in HCC.8–11 Such an approach has
yielded a wealth of information about new potential tu-
mor markers that may be useful for diagnosing the onset
of HCC. However, many of the markers can be late events
due to the secondary effect of tumor progression and the
advanced stage of the tumors. One of the common fea-
tures for HCC is that it often presents as a multifocal
primary tumor.3 This feature also is associated frequently
with other types of aggressive tumors in the oral cavity,
breast, skin, and aerodigestive tract.12,13 Furthermore,
most HCCs developed in patients with chronic liver dis-
eases (CLD).3 These observations suggest that a high de-
gree of premalignant changes may take place in
noncancerous tissue before clonal expansion of a clinical
tumor mass. Identification of these premalignant changes
may be useful for early cancer detection.

Accordingly, a microarray-based strategy was followed
by focusing on preneoplastic CLD to search for genes that
were altered in the early stage of HCC (Fig. 1). This
strategy was based on a unique feature associated with
HCC development. Most patients with HCC have ac-
companying CLD with underlying hepatitis, fibrosis, and
cirrhosis.3,14 Predisposing factors associated with HCC,
such as viral hepatitis infection, alcohol abuse, metabolic
disorders, and other environmental agents, also induce
cirrhosis.15,16 However, it is not clear whether these fac-
tors induce HCC directly or whether they act indirectly
by producing chronic liver injury and regeneration. Epi-
demiologic data indicate that patients with chronic hep-
atitis B (HBV) or C virus (HCV) infection seem to be at
an extremely high risk for developing HCC.17 Clinically,
HCC is mainly a viral hepatitis-associated cancer, because
greater than 85% of HCCs worldwide retain markers of
HBV and/or HCV.18 Similarly, patients with genetic dis-
orders, such as hemochromatosis (HHC) and type I ty-
rosinemia, who develop CLD are at a high risk for
developing HCC.14 In contrast, patients with other CLD
including Wilson’s disease (WD), alcoholic liver disease
(ALD), primary biliary cirrhosis (PBC), and autoimmune
hepatitis (AIH) may have a relatively low risk for devel-
oping HCC.14,16,19–22 However, all of these CLD share

common features including liver inflammation, lympho-
cytic infiltration, liver regeneration, fibrosis, and cirrho-
sis.14 We hypothesized that changes in gene expression
specific to HCC may occur in preneoplastic CLD. There-
fore, tissue specimens from 59 patients with cirrhosis who
received liver transplantations were used in the current
study. To validate potential HCC-associated genes, we
also included HCC surgery specimens from three inde-
pendent cohorts (14 U.S. patients, 60 Shanghai patients,
and 103 Hong Kong patients). Microarrays containing
greater than 9,000 human genes were employed. Super-
vised machine-learning algorithms with cross-validation

Fig. 1. Schematic illustration of the analysis strategy and outcomes.
Initial dataset consisted of 59 experiments for the seven CLD groups. The
F test was used to define a gene set that can discriminate these
etiologies. Based on the hierarchical clustering analysis, a regrouping
decision was made to divide these samples into two groups that reflect
the risks of patients to develop HCC. Two models were built using both
leave-one-out cross-validated (LOOCV) KNN and SVM algorithms. One
model was derived from a comparison between high-risk and low-risk
groups and the second model was generated by comparing the high-risk
group plus HCC to the low-risk group. These models were further cali-
brated by comparing the two gene sets to define two new models, one
derived from 273 overlapping genes (mostly enriched with HCC-associ-
ated genes) and the other from 283 nonoverlapping genes (mostly
reflecting the etiologies of CLD). The new models were then validated with
60 independent HCC tissue samples as testing sets and the high-risk and
low-risk groups as training sets using both KNN and SVM predictor
algorithms. Numeric values in parentheses indicate the number of pa-
tients.
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were used to compare high-risk patients with CLD with
low-risk patients with CLD. This approach allowed us to
identify misregulated genes that are commonly associated
with the high-risk CLD group and HCC.

Patients and Methods

Patients and Tissue Samples. Surgical tissue speci-
mens were collected after informed consent was obtained
from the subjects. The protocols were approved by the
institutional review board of the University of Minnesota
(Minneapolis, MN) and the National Institutes of Health
(Bethesda, MD). Tissue samples were obtained from 59
patients with end-stage CLD who received liver trans-
plantation during 1995 to 2001. Tissue samples from
eight disease-free normal liver donors were used as con-
trols. Tissue sample collection was managed through the
Liver Tissue Procurement and Distribution System (LT-
PADS) at the University of Minnesota. Tumor and
matched nontumor tissue samples from 74 patients were
obtained through either the LTPADS program or the
Liver Cancer Institute at Fudan University (Shanghai,
China). Initial clinical diagnosis and laboratory tests to
define various etiologies were performed by primary phy-
sicians who contribute to the LTPADS program. Patho-
logic diagnosis was performed independently by two
pathologists. Detailed histories for each tissue sample,
such as age, sex, ethnicity, initial clinical diagnosis, history
of alcohol use, and viral hepatitis status are available as Sup-
plemental Table 1 on the HEPATOLOGY website (http://
www.interscience.wiley.com/jpages/0270-9139/suppmat/
index.html) and in Ye et al.23 Total RNA samples were ex-
tracted from snap-frozen tissue sections using Trizol reagent
(Invitrogen, Carlsbad, CA) according to the manufacturer’s
protocol. Total RNA samples from eight control tissue sam-
ples were combined and used as a common reference pool.
These control tissue samples were negative for HBV or HCV
markers and presented normal histologic features (Supple-
mental Table 1 and data not shown).

cDNA Microarray. cDNA microarrays were gener-
ated by the National Cancer Institute (Bethesda, MD)
microarray facility at the Advanced Technology Center.
The array was based on the Incyte human UniGem ver-
sion 2.0 platform containing 9,180 cDNA clones that
map to 8,281 unique UniGene clusters and 122 EST
clones from Incyte Genomics (Palo Alto, CA). For each
experiment, fluorescent cDNA probes were prepared
from a common reference pool RNA (Cy3) and a disease
sample total RNA (Cy5). Detailed microarray platform,
hybridization, quality control, data acquisition, and data
filtering were performed essentially as previously de-
scribed.23

Analysis and Statistics. All analyses were performed
using the BRB ArrayTools (version 3.0).23 This Excel-
based platform contains several statistical tools including
hierarchical clustering, class comparison, and class predic-
tion. The class comparison tool used the F test to compute
the number of genes that were differentially expressed
among different etiologic groups at a statistically signifi-
cant level (P � .001) with median-centered log-ratios
expression data. The permutation distribution of the F
statistic, based on 2,000 random permutations, was used
to confirm statistical significance. Two machine-learning
class prediction tools, namely, the k-nearest neighbor pre-
dictor (K � 3; KNN) and the support vector machine
predictor (SVM), were applied. The nearest neighbor pre-
dictor was based on determining which expression profile
in the training set was most similar to the expression pro-
file of the specimen whose class was to be predicted. Eu-
clidean distance was used as the distance metric for the
nearest neighbor predictor. Once the nearest neighbor in
the training set of the test specimen was determined, the
class of that nearest neighbor was used as the prediction of
the class of the test specimen. In the current study, the
expression profile of the test specimen was compared with
the expression profiles of all specimens in the training set
and the three specimens in the training set most similar to
the expression profile of the test specimen were deter-
mined. The distance metric was again Euclidean distance
with regard to the genes that were univariately, signifi-
cantly, and differentially expressed between the two
classes at P � .001. Once the three nearest specimens were
identified, their classes vote and the majority class among
the three was the class predicted for the test specimen.
SVM is a machine-learning algorithm that has the poten-
tial to include collective and nonlinear effects among the
genes.24 However, our SVM algorithm is based on linear
kernel functions as previous experience has been that
more complex SVMs perform less well for this application
(R. Simon, BRB Array Tools manual). Therefore, our
SVM predictor was a linear function of the log ratios or
the log intensities that best separated the data subject to
penalty costs on the number of specimens misclassified.
Both class predictors were based on a leave-one-out cross-
validation test and on 2,000 random permutations of the
class labels using CLD as training samples to generate
weights for predicting independent tumor samples. Aver-
aged gene expression data from duplicate samples were
included in the analysis.

To test our signature genes with publicly available mi-
croarray data, we downloaded the raw intensity data from
http://genome-www5.stanford.edu/MicroArray/SMD/
and converted these data to match our gene ID. Because
these datasets utilized a universal reference RNA as their
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control, the data were converted by dividing the intensity
channels of the tumor samples by the intensity channels
of the noncancerous tissue samples. The gene intensities
from each tumor sample were normalized against the av-
erage gene intensities derived from several available corre-
sponding noncancerous tissue samples. The expression
ratios were then converted to the log2 base and were nor-
malized by median centering. Once converted, the dis-
criminatory weights of the specific gene sets from the
comparison of the high-risk and low-risk groups were
then applied to these samples to provide a final vote. A
correct prediction was an indicator of a similar gene ex-
pression profile between the high-risk samples and tumor
samples with a given signature. Only the breast carci-
noma, HCC, and lung carcinoma datasets were chosen
because they had appropriate noncancerous tissue sam-
ples included and had sufficient matched genes for our
signatures.

Results

Gene Expression Profiles of Liver Disease With
Various Etiologies. To search for genes abnormally ex-
pressed in both HCC and CLD, we initially compared the
gene expression profiles of cirrhotic tissue samples ob-
tained from 59 patients with end-stage CLD and tissue
samples from 14 patients with HCC with a pool of eight
normal tissue samples by microarray containing 9,180
human cDNA clones (Fig. 1). The CLD samples were
obtained from patients with HBV (n � 7) and HCV (n �
11) infection, HHC (n � 3), WD (n � 5), ALD (n �
10), PBC (n � 16), and AIH (n � 7). Because the global
expression profile of preneoplastic liver tissue samples did
not satisfactorily separate these samples based on their
etiologies (Supplemental S-1), we used a supervised uni-
variate F test algorithm to search for genes that can dis-
criminate these seven CLD groups. This analysis yielded a
total of 489 discriminative genes (P � .0005). Hierarchi-
cal clustering analysis25 of the 489 genes revealed that
these seven groups were separated into two major groups,
one consisting mostly of tissue samples from patients with
HBV infection, HCV infection, HHC, and WD and the
other containing mainly tissue samples from patients with
PBC, ALD, and AIH (Fig. 2A). These results indicate that
HBV infection, HCV infection, HHC, and WD are re-
lated more closely to each other than PBC, ALD, and
AIH. The segregation of these tissue samples by a molec-
ular signature specifically reflecting their etiologies corre-
lates with the risk of these patients to develop HCC, with
the exception of WD tissue samples (Fig. 2A).

Defining HCC-Associated Genes in Cirrhotic Tis-
sue Samples. We hypothesized that genes that were com-
monly misregulated in HBV/HCV/HHC/WD tissue
samples, but not ALD/PBC/AIH, would more closely
resemble the molecular signature of HCC. Therefore, the
decision to regroup was made to include HBV infection,
HCV infection, HHC, and WD as the high-risk group
and ALD, PBC, and AIH as the low-risk group. To glo-
bally search for such a gene set, we applied KNN (K � 3)
and SVM algorithms to the high-risk (HBV/HCV/
HHC/WD) and low-risk (ALD/PBC/AIH) groups,
which is a computation strategy similar to that recently
published.23 This analysis yielded a composite classifier
containing 556 discriminative genes (P � .001), which
separated these two groups very well. It provided a signif-
icant class prediction among these groups with an overall
cross-validation accuracy of 78% by KNN and 86% by
SVM. The cross-validated misclassification rates were sig-
nificantly lower than expected by chance (P � .0005;
Table 1). Using SVM, five tissue samples from the high-
risk group (n � 26) and three tissue samples from the
low-risk group (n � 33) were misclassified. Because of the
limitation of the computation model used, it is unclear
whether the misclassified tissue samples represent a mean-
ingful class or just simply background noise. In contrast,
random grouping of these tissue samples yielded statisti-
cally insignificant classification (Supplemental Table 2).

Many genes in the 556 gene set were found in the
HCC tissue samples (Fig. 2B). To search for genes that
were commonly misregulated in the high-risk group and
in HCC, we included 14 HCC tissue samples (all from
U.S. patients; two were HBV positive, seven were HCV
positive, and five had unknown etiology) together with
the high-risk group and compared this with the low-risk
group using both KNN and SVM. This analysis yielded
416 discriminative genes (P � .001), of which 273 genes
were found in the 556 gene set (49% overlap). The anal-
ysis also resulted in an overall cross-validation accuracy of
79% by KNN and 89% by SVM. The cross-validated
misclassification rates were significantly lower than ex-
pected by chance (KNN, P � .001; SVM, P � .0005; Fig.
1 and Supplemental Table 3). These results indicate that
approximately one-half of the signature genes that can
discriminate between the high-risk and the low-risk
groups may also be misregulated in HCC tissue samples.

To determine whether the 273 gene set was a common
signature for tumors, we applied this set to 60 indepen-
dent HCC tissue samples (from the Shanghai patients; all
HBV positive) described recently,23 using both KNN and
SVM predictors. The 273 gene signature provided an
increased fitness by SVM as an indicator to match 95% of
the new HCC tissue samples (Fig. 3), which was an im-
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provement in overall performance when compared with
the 556 gene set. Therefore, we referred to the 273 gene
set as the HCC-associated signature (see Supplemental
Table 4 for the detailed gene list). In contrast, the non-
overlapping 283 gene set did not provide any satisfactory
performance (Fig. 3). Because we eliminated most of the
HCC-associated genes in the nonoverlapping gene set,
most of these genes may belong to the signatures separat-
ing the etiologies. We referred to this gene set as the eti-
ology-associated signature (see Supplemental Table 5 for
the detailed gene list). The etiology-associated signature
serves as a good negative control to provide the confidence
of the test sets.

To minimize the number of genes in the model, we
selected the 30 biologically most significant genes by fil-

tering genes with lower P values (P � .0003) and larger t
values from the HCC-associated signature (see Supple-
mental Table 6 for filtering criteria). The 30 gene set also
performed well as an HCC indicator (Fig. 3). Filtering
genes using these approaches did not alter the classifica-
tion accuracy to the original 59 CLD training samples
because the 273, 283, and the 30 gene set yielded a com-
parable cross-validation accuracy to classify these samples
when compared with the 556 gene set (Supplemental Ta-
ble 7). Among the proteins encoded by the 30 gene set, 12
proteins were identified as being secretory and five pro-
teins as being cell surface associated (Fig. 4). Only three
genes were up-regulated, whereas the remaining 27 genes
were down-regulated. Table 2 provides a detailed descrip-
tion of these genes.

Fig. 2. Classification of CLD with various
underlying etiologies by gene expression. (A)
Hierarchical clustering of 59 CLD tissue sam-
ples using 489 significant genes (P � .0005)
derived from supervised class comparison.
Dendrogram has two large branches. The high-
risk group tissue samples are labeled in red
and the low-risk group tissue samples are la-
beled in blue. (B) Hierarchical clustering of 556
genes that separate the high-risk group from
the low-risk group. Each row represents an
individual gene and each column represents an
individual tissue sample. Genes were ordered
by Euclidean distance and average linkage ac-
cording to the ratios of their abundance in each
tissue sample when compared with a normal
tissue sample pool, which were normalized to
the median abundance of all genes. Pseudo-
colors indicate differential expression (blue,
transcript levels below the median; black, tran-
script levels equal to the median; yellow, tran-
script levels greater than the median; gray,
missing data). The scale represents the gene
expression ratios from 1/16 to 16 in log-base
two units.
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HCC-Associated Signature Shares Common Fea-
tures With Other Solid Tumors. To evaluate whether
the HCC-associated signature is common in other human
tumors, we used SVM and applied the gene parameters
from this signature to breast carcinoma (n � 38), lung
carcinoma (n � 56), and HCC (n �103 Hong Kong
patients: 89 HBV, four HCV, 10 others), from three
publicly available microarray datasets.26–28 These three
datasets were chosen because they had a reasonable num-
ber of available matching genes for the signatures (Fig. 5).
Additional HCC tissue samples from a totally different
array platform were intended to be used as a further con-
firmation for the 273 gene set as the HCC-associated
signature. Although the HCC-associated signature con-
sistently performed well with an additional 83% of HCC

tissue samples, it also matched 89% of the breast carci-
noma cases and 96% of the lung carcinoma cases (Fig. 5).
As a control, the etiology-associated signature did not
provide a satisfying prediction of these samples (Fig. 5).
Therefore, the HCC-associated signature contains genes
that are commonly misregulated in HCC, breast carci-
noma, and lung carcinoma.

Discussion
Identification of patients at an early stage of cancer

progression may provide a window of opportunity to
intervene with an effective therapy. However, early di-
agnosis of patients with HCC has been hampered by
the lack of reliable tumor markers for HCC develop-
ment. In the current study, we used a cDNA microar-
ray-based strategy to identify genes that are
consistently altered both in cirrhotic tissue samples be-
fore the formation of a solitary tumor and in HCC. We
hypothesized that many of these genes may serve as an
early diagnostic marker for the onset of HCC. By an-
alyzing gene expression profiles of several types of CLD
liver tissue samples with various etiologies, we found a
unique signature containing 273 genes that are abnor-
mally expressed both in premaligant CLD and HCC
tissue samples. This signature was further validated as a

Table 1. Performances of the KNN and SVM Classifiers on
Premalignant Liver Samples in Relation to Their Potential

Risks to Develop HCC

Predefined
Clinical Group

Potential
Risks

Cases Correctly
Predicted (%)

nKNN SVM

HBV/HCV/HHC/WD High 73 81 26
ALD/PBC/AIH Low 82 91 33
Overall accuracy 78 86 59

NOTE. Analyses were based on leave-one-out cross-validated classification with
2,000 random permutations at the significant level of P � .001. The analyses
yielded a composite classifier containing 556 genes. The cross-validated misclas-
sification rate was significantly lower than expected by chance (P � .0005).

Abbreviations: KNN, K-nearest neighbor; SVM, support vector machine; HCC,
hepatocellular carcinoma; HBV, hepatitis B virus; HCV, hepatitis C virus; HHC,
hemochromatosis; WD, Wilson’s disease; ALD, alcoholic liver disease; PBC,
primary biliary cirrhosis; AIH, autoimmune hepatitis.

Fig. 3. Predicting independent HCC tissue samples with the HCC-
associated signature. Sixty independent HCC tissue samples were used
for testing various gene sets for their fitness to the relevance of HCC
development. The simulated tests were based on a training of the high–
and low-risk groups from 59 patients with CLD with the weights derived
from the specified gene sets as indicated using the KNN (k � 3) or SVM
predictor. Black bars, KNN predictor; gray bars, SVM predictor.

Fig. 4. The expanded view of 273 HCC-associated genes in tissue
samples from 14 patients with HCC and from 59 patients with CLD
defined by hierarchical clustering. Data are presented in the same format
as essentially described in the Fig. 2 legend. The colored bars above the
image plot represent sample categories (red, high-risk CLD; green,
low-risk CLD; black, HCC). The top 30 biologically significant genes are
indicated. See supplemental information for full data.
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cancer-associated gene set by applying the gene expres-
sion parameters to independent microarray datasets
from two additional HCC cohorts (the 60 Shanghai
patients with HCC and the 103 Hong Kong patients
with HCC), a lung carcinoma cohort (n � 56), and a
breast carcinoma cohort (n � 38). We found that the
HCC-associated signature (273 genes) matches very
well to both the Shanghai patients with HCC and the
Hong Kong patients with HCC. The common signa-
ture shared by CLD and HCC indicate that they may
serve as early markers in diagnosing the onset of a tu-
mor. Consistently, some of the genes in the HCC-
associated signature were known previously to be
related to HCC. For example, the two most signifi-
cantly up-regulated genes, that is, TACSTD1 and
MDK, were identified previously to be up-regulated in
HCC and other solid tumors, suggesting that these

proteins may play a role in HCC development.29,30 In
addition, five of the top 30 gene sets (i.e., C9, CD5L,
CPB2, IL1RAP, and MT1B), or 25 of the 273 gene set
(i.e., ALDH8A1, ANXA7, C8A, C9, CD5L, CD163,
CG018, CPB2, CRHBP, CYP2C9, ELF3, F11, FGB,
FOXO1A, GHR, IL1RAP, MT1B, MTHFD1, NAT1,
ORM1, PGRMC1, PLG, PCK2, QDPR, and TRIP13),
have been described as candidate HCC markers in sev-
eral other microarray-based studies.8,11,28 These pro-
vide a further indirect validation for the relevance of
this signature to predict HCC. Therefore, the identifi-
cation of such a unique HCC-associated molecular sig-
nature in premalignant CLD tissue samples may help
in the future to classify patients with CLD at risk for
developing HCC. However, it should be emphasized
that we do not have sufficient follow-up data regarding
the patients with CLD in our cohort to confirm that

Table 2. The Top 30 Most Significant Genes That can Discriminate the High-Risk Group from the Low-Risk Group

Gene Symbol*
UniGene
Cluster Description

Mean Ratios in the
High-Risk Group

Mean Ratios in the
Low-Risk Group P Value

Cellular transporter
MT1B Hs.36102 Metallothionein 1B 0.5 1.0 .000001
MT1E Hs.433205 Metallothionein 1E 0.5 1.1 �.000001
MT1L Hs.380778 Metallothionein 1L 0.5 0.9 .000005
CP Hs.296634 Ceruloplasmin 0.5 1.2 �.000001
ABCA1 Hs.211562 ATP-binding cassette 1 0.5 0.7 �.000001
CACNB3 Hs.250712 Calcium channel beta 3 subunit 0.6 1.2 �.000001

Blood coagulation
PROS1 Hs.64016 Protein S 0.5 0.9 .000003
CPB2 Hs.75572 Carboxypeptidase B2 0.5 0.9 .000002
SERPINC1 Hs.75599 Antithrombin III 0.5 1.1 .000005
LACI Hs.170279 Tissue factor inhibitor 0.7 1.0 .000003

Immune response
MDK Hs.82045 Midkine 2.1 1.5 .000259
C6 Hs.1282 Complement component 6 0.4 0.7 .000001
C9 Hs.1290 Complement component 9 0.3 0.8 �.000001
CD5L Hs.52002 CD5 antigen-like 0.7 1.2 .000001

Signaling pathway
GPR126 Hs.44197 G protein-coupled receptor 126 0.7 1.1 .000006
IL1RAP Hs.173880 IL-1 receptor accessory protein 0.6 1.0 .000004
DYRK3 Hs.38018 Protein kinase, similar to sc. YAK1 0.6 1.1 �.000001

Cell adhesion
PCDH17 Hs.106511 Protocadherin 17 1.4 1.0 �.000001
TACSTD1 Hs.692 EpCAM 3.6 1.7 .000016

Miscellaneous
UAP1 Hs.21293 Sperm-associated antigen 2 0.7 1.2 �.000001
C20orf3 Hs.22391 Unknown 0.5 0.7 �.000001
CFL2 Hs.180141 Cofilin 2 0.6 0.9 �.000001
FLJ12666 Hs.23767 Hypothetical protein FLJ12666 0.6 1.0 .000006
KIAA0843 Hs.26777 KIAA0843 protein 0.7 0.9 �.000001
MRC1 Hs.75182 Mannose receptor, C type 1 0.7 1.4 .000002
NAT2 Hs.2 N-acetyltransferase 2 0.5 0.8 .000001
MYO1B Hs.121576 Myosin IB 0.7 1.1 �.000001
SIPL Hs.64322 SIPL protein 0.7 1.1 �.000001
SRD5A2 Hs.1989 Steroid-5-alpha-reductase 2 0.5 0.9 .000004
USP10 Hs.78829 Ubiquitin-specific protease 10 0.4 0.7 .000003

Abbreviations: ATP, adenosine triphosphate; IL-1, interleukin-1; ORF, open reading frame.
* Entries with HUGO-approved symbols.
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they developed HCC. Therefore, this molecular signa-
ture will require a prospective study that includes a
large number of patients with CLD to validate its clin-
ical usage as a diagnostic tool.

In the current study, we found that a large number of
HCC-associated genes were misregulated in tissue sam-

ples from patients with cirrhosis before any tumor devel-
opment. It remains to be determined whether any of these
genes contributed to the initiation of HCC. One argu-
ment against this possibility is that many of the expression
changes that are common to CLD and HCC may be
simply due to physical disruption of epithelial-mesenchy-
mal signaling interactions that regulate epithelial cell
function. Chronic liver damage and subsequent cirrhosis
may lead to hyperproliferation, which may be sufficient to
induce the disruption that leads to these large-scale gene
expression changes. However, this is an unlikely conse-
quence. First, all of our liver tissue samples were obtained
from patients with end-stage CLD who had underlying
cirrhosis. Therefore, they may have similar degrees of
physical disruption. Second, the HCC-associated signa-
ture separates very well premalignant CLD in patients
with HBV infection, HCV infection, HHC, and WD
from CLD in patients with AIH, PBC, and ALD. Most of
the genes in this signature are commonly misregulated in
patients with HBV infection, HCV infection, HHC, and
WD, with a much less degree of misregulation in patients
with AIH, PBC, and ALD. This coincides with the clin-
ical experiences of patients with cirrhosis and HBV infec-
tion, HCV infection, and HHC who have an extremely
high risk of developing HCC whereas patients with cir-
rhosis and AIH, PBC, and ALD have a relatively low risk
of developing HCC.14 Moreover, although we identified
a molecular signature consisting of greater than 500 genes
in tissue samples that can determine the patients with
CLD at risk of developing HCC, about one-half of the
genes in the signature were also consistently misregulated
in tissue samples obtained from patients with HCC. It is
difficult to reconcile the finding that such a large number
of genes occurring both in high-risk patients with CLD
and in HCC are attributed to liver damage. It is likely that
many of these genes may act as procarcinogenic genes that
contribute to hepatocarcinogenesis. Our results are con-
sistent with the hypothesis that many procarcinogenic
genes may be activated/inactivated in cirrhosis before the
formation of a solitary tumor. Consistently, silencing of
TACSTD1, a lead gene in the HCC-associated signature,
by a small interfering RNA approach resulted in growth
inhibition of HCC cells (unpublished data). The model
outlined in the current study demonstrates that HCC
development is not a rare event in high-risk patients. This
view is consistent with our observation that a high per-
centage of patients present with multiple aggressive HCC
lesions at the time of diagnosis and that no single genetic
change can be identified as a dominant event for HCC
progression. Our results support the “field cancerization”
model to explain multifocal tumors including HCC, head
and neck carcinoma, skin carcinoma, breast carcinoma,

Fig. 5. The HCC-associated signature shares common features in
human tumors. (A) The weights of the HCC-associated signature (273
genes) or the etiology-associated signature (283 genes) generated by
the SVM predictor algorithm were applied to three test sample sets
including breast carcinoma, lung carcinoma, and HCC from patients in
Hong Kong to seek their matches. The simulated tests were based on a
training set of 59 CLD tissue samples (high-risk and low-risk groups) with
the defined gene sets using leave-one-out-cross-validated SVM at P �
.001. (B) The hierarchical clustering results of the available 193 genes
of the HCC-associated signature in training (CLD) and testing samples
(HCC) are shown. Data are presented in the same format as essentially
described in the Fig. 2 legend. The colored bars above the image plot
represent sample categories (red, high-risk CLD; green, low-risk CLD;
black, HCC). The expression ratios of this plot are on the same scale as
Fig. 4.
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and lung carcinoma.12,13,31 This model suggests that re-
peated exposure of a “preconditioned” organ to carcino-
gens leads to multiple and simultaneous changes in
different areas of the organ, which eventually lead to mul-
tiple malignant primary tumors. Identification of these
changes may help to develop a strategy in the future to
prevent cancer development.

Although our gene expression profiling suggests that
patients with WD are at a high risk of developing HCC,
the cancer incidence is generally low.14 The nature of this
discrepancy is unclear. A similar procarcinogenic indica-
tor such as p53 mutations has been detected in cirrhotic
tissue samples from patients with HHC and WD,32 pre-
sumably because these patients have a similar degree of
procarcinogenic activity in the liver.33 It is reasonable to
speculate that patients with WD have the same incidence
of HCC as patients with HHC. The reason for the re-
ported low incidence of HCC may be due to the finding
that these patients generally do not live beyond adoles-
cence.

Among the top 30 biologically most significant genes
in the classifier, 12 genes encode secretory proteins and
five genes encode cell surface proteins (Fig. 4, Table 2).
These findings provide feasibility for future diagnosis of
patients with HCC using only the sera samples. More-
over, SERPINC1, LACI, PROS1, and CPB2 are involved
in the clotting-fibrinolytic pathway and abnormal expres-
sion of these proteins has been linked to thromboembo-
lism and cancer.34 C6 and C9 are components of the
complement system and complement deficiency may lead
to immune system abnormality. In addition, four pro-
teins (CP, MT1B, MT1E, and MT1L) are involved in
iron transport and abnormal expression of these proteins
leads to iron accumulation in hepatocytes, a condition
associated with liver carcinoma. It is significant that many
of these abnormally regulated genes are clustered into sev-
eral known functional pathways. The most noticeable
pathways include metal transport, blood coagulation, and
immune response (Table 2). Identification of gene clus-
ters that are functionally related indicates that these path-
ways may be significant in early-stage liver carcinogenesis.

A detailed analysis of the HCC-associated signature
revealed that TACSTD1 was a lead gene in this signature
with an average of a 3.6-fold increase in the high-risk
group (Table 2). It is known that TACSTD1 is a tumor
antigen with an increased expression in many tumors with
epithelial origin including major gastrointestinal tu-
mors.35,36 Mature hepatocytes do not express the TAC-
STD1 gene. It may function as a cell adhesion molecule to
promote tumor cell growth.35,36 Our data suggest that
TACSTD1 may also be involved in hepatocarcinogenesis.
Studies are under way to further characterize this biolog-

ically significant gene as well as others in the HCC-asso-
ciated signature for their roles in HCC initiation.
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